無限不可能性ドライブ

『ニューラルネットワーク自作入門』に刺激されてExcelVBAでニューラルネットワークを作ってみたものの、やっぱり数学やらなきゃと思い少しずつやってきたのもあって、自分の知識の整理とかそういった感じです。

【数式編】(逆伝播)のまとめ 1

f:id:celaeno42:20181027233159p:plain


逆伝播についてはそれぞれの重みとバイアスの  \nabla E (勾配)の部分を載せます。
重みやバイアスは、 \nabla E (勾配)に学習率を掛け、現在の重みやバイアスの値から引くことで更新していきます。

出力層

出力層についても共通部分を  \delta で表すことにしましょう。

ユニットo11

 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{11}^4} = \frac{\partial E}{\partial u_1^4} \frac{\partial u_1^4}{\partial w_{11}^4} = (z_1^4 - t_1) \times z_1^3 = \delta_1^4 \times z_1^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{12}^4} = \frac{\partial E}{\partial u_1^4} \frac{\partial u_1^4}{\partial w_{12}^4} = (z_1^4 - t_1) \times z_2^3 = \delta_1^4 \times z_2^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{13}^4} = \frac{\partial E}{\partial u_1^4} \frac{\partial u_1^4}{\partial w_{13}^4} = (z_1^4 - t_1) \times z_3^3 = \delta_1^4 \times z_3^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{14}^4} = \frac{\partial E}{\partial u_1^4} \frac{\partial u_1^4}{\partial w_{14}^4} = (z_1^4 - t_1) \times z_4^3 = \delta_1^4 \times z_4^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial b_1^4} = \frac{\partial E}{\partial u_1^4} \frac{\partial u_1^4}{\partial b_1^4} = (z_1^4 - t_1) \times 1 = \delta_1^4 \times 1
\end{align}


ユニットo12

 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{21}^4} = \frac{\partial E}{\partial u_2^4} \frac{\partial u_2^4}{\partial w_{21}^4} = (z_2^4 - t_2) \times z_1^3 = \delta_2^4 \times z_1^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{22}^4} = \frac{\partial E}{\partial u_2^4} \frac{\partial u_2^4}{\partial w_{22}^4} = (z_2^4 - t_2) \times z_2^3 = \delta_2^4 \times z_2^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{23}^4} = \frac{\partial E}{\partial u_2^4} \frac{\partial u_2^4}{\partial w_{23}^4} = (z_2^4 - t_2) \times z_3^3 = \delta_2^4 \times z_3^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{24}^4} = \frac{\partial E}{\partial u_2^4} \frac{\partial u_2^4}{\partial w_{24}^4} = (z_2^4 - t_2) \times z_4^3 = \delta_2^4 \times z_4^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial b_2^4} = \frac{\partial E}{\partial u_2^4} \frac{\partial u_2^4}{\partial b_2^4} = (z_2^4 - t_2) \times 1 = \delta_2^4 \times 1
\end{align}


ユニットo13

 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{31}^4} = \frac{\partial E}{\partial u_3^4} \frac{\partial u_3^4}{\partial w_{31}^4} = (z_3^4 - t_3) \times z_1^3 = \delta_3^4 \times z_1^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{32}^4} = \frac{\partial E}{\partial u_3^4} \frac{\partial u_3^4}{\partial w_{32}^4} = (z_3^4 - t_3) \times z_2^3 = \delta_3^4 \times z_2^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{33}^4} = \frac{\partial E}{\partial u_3^4} \frac{\partial u_3^4}{\partial w_{33}^4} = (z_3^4 - t_3) \times z_3^3 = \delta_3^4 \times z_3^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial w_{34}^4} = \frac{\partial E}{\partial u_3^4} \frac{\partial u_3^4}{\partial w_{34}^4} = (z_3^4 - t_3) \times z_4^3 = \delta_3^4 \times z_4^3
\end{align}


 \displaystyle \begin{align}
 \frac{\partial E}{\partial b_3^4} = \frac{\partial E}{\partial u_3^4} \frac{\partial u_3^4}{\partial b_3^4} = (z_3^4 - t_3) \times 1 = \delta_3^4 \times 1
\end{align}


隠れ層2層め

ユニットh21

 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{11}^3} = \frac{\partial E}{\partial u_1^3} \frac{\partial u_1^3}{\partial w_{11}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{11}^4 \times ReLU'(u_1^3) \\
\\+ \delta_2^4 \times w_{21}^4 \times ReLU'(u_1^3) \\
\\+ \delta_3^4 \times w_{31}^4 \times ReLU'(u_1^3)
\end{pmatrix}
\times z_1^2 = \delta_1^3 \times z_1^2 \\
\\
\\
\frac{\partial E}{\partial w_{12}^3} = \frac{\partial E}{\partial u_1^3} \frac{\partial u_1^3}{\partial w_{12}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{11}^4 \times ReLU'(u_1^3) \\
\\+ \delta_2^4 \times w_{21}^4 \times ReLU'(u_1^3) \\
\\+ \delta_3^4 \times w_{31}^4 \times ReLU'(u_1^3)
\end{pmatrix}
\times z_2^2 = \delta_1^3 \times z_2^2 \\
\\
\\
\frac{\partial E}{\partial w_{13}^3} = \frac{\partial E}{\partial u_1^3} \frac{\partial u_1^3}{\partial w_{13}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{11}^4 \times ReLU'(u_1^3) \\
\\+ \delta_2^4 \times w_{21}^4 \times ReLU'(u_1^3) \\
\\+ \delta_3^4 \times w_{31}^4 \times ReLU'(u_1^3)
\end{pmatrix}
\times z_3^2 = \delta_1^3 \times z_3^2 \\
\\
\\
\frac{\partial E}{\partial b_1^3} = \frac{\partial E}{\partial u_1^3} \frac{\partial u_1^3}{\partial b_1^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{11}^4 \times ReLU'(u_1^3) \\
\\+ \delta_2^4 \times w_{21}^4 \times ReLU'(u_1^3) \\
\\+ \delta_3^4 \times w_{31}^4 \times ReLU'(u_1^3)
\end{pmatrix}
\times 1 = \delta_1^3 \times 1
\end{align}


ユニットh22

 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{21}^3} = \frac{\partial E}{\partial u_2^3} \frac{\partial u_2^3}{\partial w_{21}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{12}^4 \times ReLU'(u_2^3) \\
\\+ \delta_2^4 \times w_{22}^4 \times ReLU'(u_2^3) \\
\\+ \delta_3^4 \times w_{32}^4 \times ReLU'(u_2^3)
\end{pmatrix}
\times z_1^2 = \delta_2^3 \times z_1^2 \\
\\
\\
\frac{\partial E}{\partial w_{22}^3} = \frac{\partial E}{\partial u_2^3} \frac{\partial u_2^3}{\partial w_{22}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{12}^4 \times ReLU'(u_2^3) \\
\\+ \delta_2^4 \times w_{22}^4 \times ReLU'(u_2^3) \\
\\+ \delta_3^4 \times w_{32}^4 \times ReLU'(u_2^3)
\end{pmatrix}
\times z_2^2 = \delta_2^3 \times z_2^2 \\
\\
\\
\frac{\partial E}{\partial w_{23}^3} = \frac{\partial E}{\partial u_2^3} \frac{\partial u_2^3}{\partial w_{23}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{12}^4 \times ReLU'(u_2^3) \\
\\+ \delta_2^4 \times w_{22}^4 \times ReLU'(u_2^3) \\
\\+ \delta_3^4 \times w_{32}^4 \times ReLU'(u_2^3)
\end{pmatrix}
\times z_3^2 = \delta_2^3 \times z_3^2 \\
\\
\\
\frac{\partial E}{\partial b_2^3} = \frac{\partial E}{\partial u_2^3} \frac{\partial u_2^3}{\partial b_2^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{12}^4 \times ReLU'(u_2^3) \\
\\+ \delta_2^4 \times w_{22}^4 \times ReLU'(u_2^3) \\
\\+ \delta_3^4 \times w_{32}^4 \times ReLU'(u_2^3)
\end{pmatrix}
\times 1 = \delta_2^3 \times 1
\end{align}


ユニットh23

 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{31}^3} = \frac{\partial E}{\partial u_3^3} \frac{\partial u_3^3}{\partial w_{31}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{13}^4 \times ReLU'(u_3^3) \\
\\+ \delta_2^4 \times w_{23}^4 \times ReLU'(u_3^3) \\
\\+ \delta_3^4 \times w_{33}^4 \times ReLU'(u_3^3)
\end{pmatrix}
\times z_1^2 = \delta_3^3 \times z_1^2 \\
\\
\\
\frac{\partial E}{\partial w_{32}^3} = \frac{\partial E}{\partial u_3^3} \frac{\partial u_3^3}{\partial w_{32}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{13}^4 \times ReLU'(u_3^3) \\
\\+ \delta_2^4 \times w_{23}^4 \times ReLU'(u_3^3) \\
\\+ \delta_3^4 \times w_{33}^4 \times ReLU'(u_3^3)
\end{pmatrix}
\times z_2^2 = \delta_3^3 \times z_2^2 \\
\\
\\
\frac{\partial E}{\partial w_{33}^3} = \frac{\partial E}{\partial u_3^3} \frac{\partial u_3^3}{\partial w_{33}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{13}^4 \times ReLU'(u_3^3) \\
\\+ \delta_2^4 \times w_{23}^4 \times ReLU'(u_3^3) \\
\\+ \delta_3^4 \times w_{33}^4 \times ReLU'(u_3^3)
\end{pmatrix}
\times z_3^2 = \delta_3^3 \times z_3^2 \\
\\
\\
\frac{\partial E}{\partial b_3^3} = \frac{\partial E}{\partial u_3^3} \frac{\partial u_3^3}{\partial b_3^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{13}^4 \times ReLU'(u_3^3) \\
\\+ \delta_2^4 \times w_{23}^4 \times ReLU'(u_3^3) \\
\\+ \delta_3^4 \times w_{33}^4 \times ReLU'(u_3^3)
\end{pmatrix}
\times 1 = \delta_3^3 \times 1
\end{align}


ユニットh24

 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{41}^3} = \frac{\partial E}{\partial u_4^3} \frac{\partial u_4^3}{\partial w_{41}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{14}^4 \times ReLU'(u_4^3) \\
\\+ \delta_2^4 \times w_{24}^4 \times ReLU'(u_4^3) \\
\\+ \delta_3^4 \times w_{34}^4 \times ReLU'(u_4^3)
\end{pmatrix}
\times z_1^2 = \delta_4^3 \times z_1^2 \\
\\
\\
\frac{\partial E}{\partial w_{42}^3} = \frac{\partial E}{\partial u_4^3} \frac{\partial u_4^3}{\partial w_{42}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{14}^4 \times ReLU'(u_4^3) \\
\\+ \delta_2^4 \times w_{24}^4 \times ReLU'(u_4^3) \\
\\+ \delta_3^4 \times w_{34}^4 \times ReLU'(u_4^3)
\end{pmatrix}
\times z_2^2 = \delta_4^3 \times z_2^2 \\
\\
\\
\frac{\partial E}{\partial w_{43}^3} = \frac{\partial E}{\partial u_4^3} \frac{\partial u_4^3}{\partial w_{43}^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{14}^4 \times ReLU'(u_4^3) \\
\\+ \delta_2^4 \times w_{24}^4 \times ReLU'(u_4^3) \\
\\+ \delta_3^4 \times w_{34}^4 \times ReLU'(u_4^3)
\end{pmatrix}
\times z_3^2 = \delta_4^3 \times z_3^2 \\
\\
\\
\frac{\partial E}{\partial b_4^3} = \frac{\partial E}{\partial u_4^3} \frac{\partial u_4^3}{\partial b_4^3}
&=
\begin{pmatrix}
 \delta_1^4 \times w_{14}^4 \times ReLU'(u_4^3) \\
\\+ \delta_2^4 \times w_{24}^4 \times ReLU'(u_4^3) \\
\\+ \delta_3^4 \times w_{34}^4 \times ReLU'(u_4^3)
\end{pmatrix}
\times 1 = \delta_4^3 \times 1
\end{align}

隠れ層1層め

ユニットh11

 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{11}^2} &= \frac{\partial E}{\partial u_1^2} \frac{\partial u_1^2}{\partial w_{11}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{11}^3 \times ReLU'(u_1^2) \\
\\ + \delta_2^3 \times w_{21}^3 \times ReLU'(u_1^2) \\
\\ + \delta_3^3 \times w_{31}^3 \times ReLU'(u_1^2) \\
\\ + \delta_4^3 \times w_{41}^3 \times ReLU'(u_1^2)
\end{pmatrix}
\times x_1
= \delta_1^2 \times x_1
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{12}^2} &= \frac{\partial E}{\partial u_1^2} \frac{\partial u_1^2}{\partial w_{12}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{11}^3 \times ReLU'(u_1^2) \\
\\ + \delta_2^3 \times w_{21}^3 \times ReLU'(u_1^2) \\
\\ + \delta_3^3 \times w_{31}^3 \times ReLU'(u_1^2) \\
\\ + \delta_4^3 \times w_{41}^3 \times ReLU'(u_1^2)
\end{pmatrix}
\times x_2
= \delta_1^2 \times x_2
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{13}^2} &= \frac{\partial E}{\partial u_1^2} \frac{\partial u_1^2}{\partial w_{13}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{11}^3 \times ReLU'(u_1^2) \\
\\ + \delta_2^3 \times w_{21}^3 \times ReLU'(u_1^2) \\
\\ + \delta_3^3 \times w_{31}^3 \times ReLU'(u_1^2) \\
\\ + \delta_4^3 \times w_{41}^3 \times ReLU'(u_1^2)
\end{pmatrix}
\times x_3
= \delta_1^2 \times x_3
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{14}^2} &= \frac{\partial E}{\partial u_1^2} \frac{\partial u_1^2}{\partial w_{14}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{11}^3 \times ReLU'(u_1^2) \\
\\ + \delta_2^3 \times w_{21}^3 \times ReLU'(u_1^2) \\
\\ + \delta_3^3 \times w_{31}^3 \times ReLU'(u_1^2) \\
\\ + \delta_4^3 \times w_{41}^3 \times ReLU'(u_1^2)
\end{pmatrix}
\times x_4
= \delta_1^2 \times x_4
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial b_1^2} &= \frac{\partial E}{\partial u_1^2} \frac{\partial u_1^2}{\partial b_1^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{11}^3 \times ReLU'(u_1^2) \\
\\ + \delta_2^3 \times w_{21}^3 \times ReLU'(u_1^2) \\
\\ + \delta_3^3 \times w_{31}^3 \times ReLU'(u_1^2) \\
\\ + \delta_4^3 \times w_{41}^3 \times ReLU'(u_1^2)
\end{pmatrix}
\times 1
= \delta_1^2 \times 1
\end{align}


ユニットh12

 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{21}^2} &= \frac{\partial E}{\partial u_2^2} \frac{\partial u_2^2}{\partial w_{21}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{12}^3 \times ReLU'(u_2^2) \\
\\ + \delta_2^3 \times w_{22}^3 \times ReLU'(u_2^2) \\
\\ + \delta_3^3 \times w_{32}^3 \times ReLU'(u_2^2) \\
\\ + \delta_4^3 \times w_{42}^3 \times ReLU'(u_2^2)
\end{pmatrix}
\times x_1
= \delta_2^2 \times x_1
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{22}^2} &= \frac{\partial E}{\partial u_2^2} \frac{\partial u_2^2}{\partial w_{22}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{12}^3 \times ReLU'(u_2^2) \\
\\ + \delta_2^3 \times w_{22}^3 \times ReLU'(u_2^2) \\
\\ + \delta_3^3 \times w_{32}^3 \times ReLU'(u_2^2) \\
\\ + \delta_4^3 \times w_{42}^3 \times ReLU'(u_2^2)
\end{pmatrix}
\times x_2
= \delta_2^2 \times x_2
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{23}^2} &= \frac{\partial E}{\partial u_2^2} \frac{\partial u_2^2}{\partial w_{23}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{12}^3 \times ReLU'(u_2^2) \\
\\ + \delta_2^3 \times w_{22}^3 \times ReLU'(u_2^2) \\
\\ + \delta_3^3 \times w_{32}^3 \times ReLU'(u_2^2) \\
\\ + \delta_4^3 \times w_{42}^3 \times ReLU'(u_2^2)
\end{pmatrix}
\times x_3
= \delta_2^2 \times x_3
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{24}^2} &= \frac{\partial E}{\partial u_2^2} \frac{\partial u_2^2}{\partial w_{24}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{12}^3 \times ReLU'(u_2^2) \\
\\ + \delta_2^3 \times w_{22}^3 \times ReLU'(u_2^2) \\
\\ + \delta_3^3 \times w_{32}^3 \times ReLU'(u_2^2) \\
\\ + \delta_4^3 \times w_{42}^3 \times ReLU'(u_2^2)
\end{pmatrix}
\times x_4
= \delta_2^2 \times x_4
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial b_2^2} &= \frac{\partial E}{\partial u_2^2} \frac{\partial u_2^2}{\partial b_2^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{12}^3 \times ReLU'(u_2^2) \\
\\ + \delta_2^3 \times w_{22}^3 \times ReLU'(u_2^2) \\
\\ + \delta_3^3 \times w_{32}^3 \times ReLU'(u_2^2) \\
\\ + \delta_4^3 \times w_{42}^3 \times ReLU'(u_2^2)
\end{pmatrix}
\times 1
= \delta_2^2 \times 1
\end{align}


ユニットh13

 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{31}^2} &= \frac{\partial E}{\partial u_3^2} \frac{\partial u_3^2}{\partial w_{31}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{13}^3 \times ReLU'(u_3^2) \\
\\ + \delta_2^3 \times w_{23}^3 \times ReLU'(u_3^2) \\
\\ + \delta_3^3 \times w_{33}^3 \times ReLU'(u_3^2) \\
\\ + \delta_4^3 \times w_{43}^3 \times ReLU'(u_3^2)
\end{pmatrix}
\times x_1
= \delta_3^2 \times x_1
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{32}^2} &= \frac{\partial E}{\partial u_3^2} \frac{\partial u_3^2}{\partial w_{32}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{13}^3 \times ReLU'(u_3^2) \\
\\ + \delta_2^3 \times w_{23}^3 \times ReLU'(u_3^2) \\
\\ + \delta_3^3 \times w_{33}^3 \times ReLU'(u_3^2) \\
\\ + \delta_4^3 \times w_{43}^3 \times ReLU'(u_3^2)
\end{pmatrix}
\times x_2
= \delta_3^2 \times x_2
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{33}^2} &= \frac{\partial E}{\partial u_3^2} \frac{\partial u_3^2}{\partial w_{33}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{13}^3 \times ReLU'(u_3^2) \\
\\ + \delta_2^3 \times w_{23}^3 \times ReLU'(u_3^2) \\
\\ + \delta_3^3 \times w_{33}^3 \times ReLU'(u_3^2) \\
\\ + \delta_4^3 \times w_{43}^3 \times ReLU'(u_3^2)
\end{pmatrix}
\times x_3
= \delta_3^2 \times x_3
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial w_{34}^2} &= \frac{\partial E}{\partial u_3^2} \frac{\partial u_3^2}{\partial w_{34}^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{13}^3 \times ReLU'(u_3^2) \\
\\ + \delta_2^3 \times w_{23}^3 \times ReLU'(u_3^2) \\
\\ + \delta_3^3 \times w_{33}^3 \times ReLU'(u_3^2) \\
\\ + \delta_4^3 \times w_{43}^3 \times ReLU'(u_3^2)
\end{pmatrix}
\times x_4
= \delta_3^2 \times x_4
\end{align}


 \displaystyle \begin{align}
\frac{\partial E}{\partial b_3^2} &= \frac{\partial E}{\partial u_3^2} \frac{\partial u_3^2}{\partial b_3^2}
= 
\begin{pmatrix}
 \delta_1^3 \times w_{13}^3 \times ReLU'(u_3^2) \\
\\ + \delta_2^3 \times w_{23}^3 \times ReLU'(u_3^2) \\
\\ + \delta_3^3 \times w_{33}^3 \times ReLU'(u_3^2) \\
\\ + \delta_4^3 \times w_{43}^3 \times ReLU'(u_3^2)
\end{pmatrix}
\times 1
= \delta_3^2 \times 1
\end{align}


これらの計算式を実装することで、ニューラルネットワークを構築することができます。